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SUMMARY 

A method of eliminating the singularities involved in boundary element methods for three-dimensional potential 
problems is presented and the non-singular expressions of integrals on an element on which the singular point is 
situated are given for linear and quadratic interpolation functions. Numerical examples are compared with 
analytical solutions to show that the higher-order interpolations have better precision. 
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1. INTRODUCTION 

Boundary element methods (BEMs) are widely used in numerical calculations of engineering 
problems. In BEMs for various problems, proper fundamental solutions are needed and they usually 
have singularities which are involved in the integrations. It is well known that the boundary element 
method is a numerical method for solving boundary integral equations and the numerical procedure 
consists mainly of numerical integration to form a set of linear simultaneous equations of unknown 
values of nodal points on the boundary. After discretization the surface of the domain of the problem is 
divided into elements over which linear or quadratic interpolation functions are applied. The numerical 
integration can be carried out with Gauss quadrature if the singular point is not situated on the element 
and good accuracy can be obtained with an adequate number of Gauss integration points. However, 
when the singular point is on the element, the accuracy of numerical integration is greatly affected by it 
and an increase in the number of Gauss integration points is of no help owing to the singular behaviour 
of the integrand near the singular point. 

For the singularities in boundary element methods of elasticity, Lachat' proposed a method of 
mapping the triangular element into a quadrilaterial to reduce one order of singularity and using rigid 
body motion to get rid of the influence of the remaining singularity. Rizzo and Shippy' used polar co- 
ordinates combined with rigid body motion prior to representing the displacement in terms of shape 
functions to treat singularities in elasticity. However, in potential problems there is no such special 
solution as rigid body motion in elasticity. Polar co-ordinates or degenerated mapping can only reduce 
one order of singularity in boundary element methods for potential problems. Cao et aL3 have been 
successful in moving the singular points away from the boundary and outside the problem domain. 
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However, the desingularization distance in their method must be determined carefully according to the 
mesh size so that problems with uniqueness and ill-conditioning can be avoided. 

Higher-order interpolation functions in boundary element methods are more and more used in 
practical numerical calculations owing to the higher accuracy and overall computational efficiency, 
including computer storage and CPU time However, for different interpolation functions 
the singularity due to the fundamental solution is expressed in different ways and different methods 
have to be used to eliminate the singularity. In this paper it is shown that the singularity in the boundary 
elements for three-dimensional potential problems can be completely eliminated and for the linear 
element analytical expressions are given for the integral on the element on which the singular point is 
situated. Integral expressions devoid of singularity are also given for the quadratic element and the 
integral can be evaluated directly by Gauss quadrature. 

2. BOUNDARY INTEGRAL EQUATION FOR POTENTIAL PROBLEMS 

For a potential function 
equation6 

which satisfies the Laplace equation, we have the boundary integral 

where p and q refer to the source point and field point respectively, G(p, q)  is the Green function or 
fundamental solution, S is the boundary surface of the domain of the problem, a/an, refers to the 
normal derivative and a@) is the solid angle at point p .  Usually G@, q)  is composed of a Rankine 
source, which is the inverse of the distance between the source point and the field point, and other non- 
singular terms: 

The non-singular term H(p,  q) makes no contribution to the solid angle a(p), which is determined 
solely by the first term (Rankine source) of (2) and the geometry at point p :  a(p)  = 471 when p is 
situated in the domain, a(p)  = 271 when p is situated on a boundary which is smooth at point p ,  and 
a(p)  = 0 when p is outside the domain. 

3. BOUNDARY ELEMENT INTERPOLATIONS 

To solve the boundary integral equation (1) numerically, the boundary surface is discretized into a set 
of elements. Within each element, interpolation functions are adopted so that a certain number of nodal 
points on the element are representative of the element. The constant, linear and quadratic elements are 
mostly used in engineering computations. Here we consider the linear and quadratic ones. The 
interpolations for the co-ordinates and for the potential itself are 

where xb yk, z k  and $k are the nodal co-ordinates and potential values respectively and the shape 
functions Nk(5, r,~) are 

Nl = w + t)( l  + rl), 

N3 = a(1 - 5)(1 - 49, 
Nz = 

N4 = 

- t)(l + 4 9 1  

+ t)(l - 4 9 1  

(4) 
4 
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for linear elements (n = 4), and 

for quadratic elements (n = 8), with - 1 6 t, q 6 1. 

4. TREATMENT OF SINGULARITY FOR LINEAR ELEMENT 

From (2) we can see that when the field point q approaches the source point p, G(p, q) has a 
singularity. For the non-singular term H(p ,  q), direct Gauss quadrature can be used without loss of 
accuracy. Here we concentrate on the Rankine source in (2). For an element on which the source point 
p is situated, it is supposed without loss of generality that point p is the nodal point 1 (see Figure 1). 
The singular integrals in (1) on the element are to be evaluated. 

By means of Lachat’s subelement we divide the element into two triangular elements (Figure 2) and 
map the subelement into a quadrilateral. On the quadrilateral element (see Figure l(c)), interpolation 
functions (4) are used and the corresponding Jacobian can be expressed as 

“I 

3 A‘ 
Figure 1 .  Subdivision of an element and degenerate mapping. (a) Subdivision of a four-node linear element into two triangular 
subelements. @) Mapping of the first subelement into a quadrilateral. (c) Mapping of the second subelement into a quadrilateral 
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“I 

Figure 2. Subdivision of a quadratic element and degenerate mapping. (a) Subdivision and interposition of temporary 
interpolation points il,  i2, . . . ,i15 when the source point is node 1 or node 5. (b) Mapping of a six-node triangular element into a 
quadrilateral with node a as the source point 

where 

There is a degeneracy in the map when q approaches unity, which means that the field point 
approaches the source point. The degeneracy obviously reduces one order of singularity. The unit 
normal vector of the element is expressed as 

bl i + bd + b3 k 
J(b: + b; + b:) ’ n =  

where i, j and k are unit vectors along the co-ordinate axes. The distance betweenp and q is 

where 

(7) 

The terms a2(<) and a&) can be obtained by replacing x with y and z respectively without 
changing the subscripts involved. Because a1 ( r )  bl + az(<);b2 + a3(()b3 = 0, which can be easily 
proved directly from the orthogonal relationship between the normal vector n of the plane 
element and the vector r pointing from the source point to the field point, the normal derivative 
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1 

c1 
u = - l n  

315 

J(c1 + 2c2 + c3) + JCl + C2IJCI  

J(C1 - 2cz + c3) - JCl + CZ/JCI  ’ 

where k= 1, 2, 3 and 4 correspond to nodes 1, 1,2 and 3 respectively for the first subelement and to 
nodes 1, 1,3 and 4 respectively for the second subelement. As for the second integral in (l), if a*/& 
is also interpolated as the co-ordinates in (3), considering (6) and (8), we have 

Obviously the right-hand-side integrals in (10) and (1 1) and normal double integrals and Gauss 
quadrature can be used directly. The first term in the large parentheses multiplied by Nk(t, q )  in the 
integrand of (1 1) can be integrated analytically and (1 1) can be written as 

5.  TREATMENT OF SINGULARITY FOR QUADRATIC ELEMENT 

The source point may be any one of the eight nodal points on a quadratic element. Lachat’s subelement 
method is still used to divide the element into several subelements. There are two cases: the source 
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point can be one of the four corner points or one of the four side midpoints. There are several ways of 
subdividing the element. For some ways, certain temporary interpolation points have to be arranged so 
that the subelements are still quadratic ones. After integration the temporary interpolation points are 
condensed. Whatever the method of subdivision, the source point is always arranged on the vertices of 
some triangular subelements and degenerate mapping is used to reduce one-order of singularity. For a 
six-node triangular element (which is taken to be a degenerate quadrilateral with the degenerated side 
coinciding with the source point) (see Figure 2), if equations ( 5 )  are still used as shape functions, the 
Jacobian is 

where 

&(5, q) is obtained if y and z are replaced by z and x respectively and B3(5, q) is obtained by 
replacing y and z with x and y respectively. We can see that (13) is just like (6), but the terms in the 
square root are much more complicated. The distance between the source point and the field point can 
be expressed as 

where 

4 5 ,  1) and A3(5, 1) are obtained if x is replaced by y and z respectively in the expression ofAl(5, q). 
Through tedious deduction we obtain 

_ -  dG dH@14) - 
dn dn 

(15) 
64 n ubcdef - 

(1 - v ) [ A : ( ~ ,  V )  + A;(L gh) + A;K v ) ~ ~ / ~ J P : ( ~ ~  rl)  + B:(L rl)  + ~ ; ( t ,  rl)~ ' 
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where 

xu x b  x c  xd  x e  x f  

i z a  z b  z c  1 ’ / j d  ze z f  1 Aabc = Y a  y b  y c  7 . .. Adef = Y d  Y e  Y f  . 

From (1 5) we can see that there is only one order of singularity which is represented by the inverse of 
1 - which is going to be eliminated by the same factor in the expression of the Jacobian (13). The 
first integral in (1) on the subelement becomes 

and the second integral in (1) on the subelement is 

or 

if a/& is also interpolated with the shape functions (5). In (16) and (1 7) k = 1, 2,. . . ,8 correspond to 
nodes a, a, b, c, a, d, e andfrespectively (see Figure 2). Gauss quadrature is used directly for (1 6) and 
(1 7). For other subelements without the source point the integrals in (1) are non-singular and Gauss 
quadrature can be used with non-degenerate mapping. 
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6. NUMERICAL EXAMPLES 

Two numerical examples are considered. The first is the potential field calculation of a sphere with 
radius a (in the numerical calculation a is taken to be unity) moving in an infinite body of water. The 
analytical solution to this problem is 

ua3x 

JI = 2(x2 + JJ + z2)3’2 ’ 
where U is the velocity of the sphere, the origin of the co-ordinate system Oxyz coincides with the 
centre of the sphere and the x-axis is taken to be parallel to the direction of movement of the sphere. 

The corresponding boundary condition on the interface between the sphere and the water is 

aJI - = -Unl. 
dn 

Substituting (1 9) in (1) gives 

where S is the surface of the sphere and hence u@) = 2z. The Rankine source function can be taken as 
the fundamental solution. 

In this case the integral on the subelement on which the field point and the source point coincide 
may be written according to the last two sections as 

for the linear element with interpolations equations (3) and (4) and as 

for the quadratic element with interpolation equations (3) and (5).  
In the numerical calculation we first discretize the surface of the sphere with 45 nodal points using 

quadratic elements (considering symmetry with respect to the y-axis) (see Figure 3) and 57 nodal 
points using linear elements. The latter mesh is obtained by adding nodal points at the centres of the 
quadratic elements in the former mesh. The piecewise constant element is also used to calculate the 
same problem and the corresponding mesh is the same as that for the linear element. For the piecewise 
constant element the geometry is still interpolated with linear interpolation functions. 

Further, the mesh is refined with 161 nodal points for the quadratic element and with 209 nodal 
points for the linear element. The results are presented in Table I in comparison with the analytical 
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2 

Figure 3. Quadratic element arrangement on a quadrant of a sphere surface 

Table I. Potential values at given nodal points' 

No. LE, N = 57 QE, N = 45 LE, N = 209 QE, N = 161 Analytical 

2 
5 
6 
7 
8 

14 
15 
19 
20 
21 
22 

0.1 855 
0.3458 
0.3292 
0.2832 
0.1503 
0.4526 
0.3292 
0.4899 
0.4526 
0.3458 
0.1855 

0.1905 
0.3500 
0.3329 
0.2856 
0.1518 
0.4566 
0.3329 
0.4950 
0.4565 
0.3500 
0.1905 

0.1899 
0.3512 
0.3347 
0.2873 
0.1513 
0.4591 
0.3352 
0.4972 
0.4597 
0.3522 
0.1909 

0.1913 
0.3534 
0.3368 
0.2885 
0.1512 
0.46 1 7 
0.3368 
0.4998 
0.46 1 7 
0.3534 
0.1913 

0.1913 
0.3536 
0-3369 
0.2887 
0.1515 
0.4619 
0.3369 
0.5000 
0.46 19 
0.3536 
0.1913 

* LE, linear element; QE, quadratic element; N, number of nodes. 

solution (18). If the RMS error is considered, which is defined as 

where N is the number of nodal points and +ma and *nm are the analytical and numerical values 
respectively, we find that the quadratic interpolation gives better precision with fewer nodal points and 
that the linear interpolation is better than the piecewise constant approximation. Values of Ems for 
different nodal points and different interpolations are given in Table 11. 

The second example is taken from Reference 3. It is a Dirichlet problem with a dipole of unit 
strength located at (0, 0, - 1) and the dipole direction parallel to the x-axis. The normal derivative 
a+/& is sought on z = 0 on which the boundary condition 

In this case appropriate source points are arranged on the boundary z = 0. The domain is the lower 
half-space below z = 0. We can isolate the singularity of the dipole by decomposing the potential JI 
into regular and singular parts: 

= 0 is imposed. 
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Table 11. Rh4S errors for different interpolation functions 

N 45 57 161 209 

QE 0.003246 - 0.0002 138 - 
LE - 0.006413 - 0.004056 
Const. - 0.01 161 1 - 0.006627 

Substituting (21) in (1) and considering that both the source point and the field point are on the same 
plane z = 0 and hence the normal derivative of the Rankine source function is always zero, we have the 
integral equation 

Since II/ = 0 on z = 0 and the surface z = 0 is smooth everywhere, i.e. a(p )  = 2n, we finally have 

The discretization on z = 0 must be carefully arranged for this case. On z = 0 near the dipole the size 
of elements should not be over 0.6 for quadratic interpolation and 0.1 for linear interpolation, 
otherwise, even if the nodal points of an element have exact values, the interpolations cannot give good 
precision, and vice versa, if the interpolations do not have good precision, the final results of nodal 
points will not be satisfactory. The size of elements can be gradually increased as the discretized 
portion gets farther away from the dipole. Another factor which must be considered is the truncation of 
the surface z=O. However, owing to the rapid decay property, truncation the z=O plane at 
R, = I xmm I = I ymax I = 5 (symmetry with respect to y is considered) seems to be appropriate. In 
Table I11 the RMS errors are given in relation to the truncation distance R, and the number of nodal 
points N for the quadratic element. Table IV gives the RMS errors for the linear interpolation and the 
piecewise constant approximation. It is obvious from Tables I11 and IV that the quadratic interpolation 
gives lower RMS errors with fewer nodal points than the linear interpolation, which in turn has lower 
RMS errors than the piecewise constant approximation with the same number of elements. (In the case 
of the piecewise constant approximation the source point is arranged at the centroids of the elements 
and hence with the same mesh as for the linear interpolation the piecewise approximation has fewer 
source points.) 

Table 111. Em for quadratic interpolation 

N 121 181 253 337 443 
R ,  2.0 3.0 4.0 5.0 7.0 

Em 0.0012084 0.0003383 0.00021 16 0.0001709 0.0001458 

Table n! Em for piecewise constant approximation (C) and linear interpolation (L) 

N 23 1 325 435 561 703 
Rm 2.0 3.0 4.0 5.0 7.0 

E m m  0.002743 0.002141 0.001826 0.001596 0.001418 
Em(L) 0.0009725 0.0004098 0.0003 17 0.000274 0.000242 
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7. CONCLUSIONS 

A higher-order boundary element method for three-dimensional potential problems is presented. 
Integral expressions devoid of singularity are given for both linear and quadratic elements and Gauss 
quadrature can be used directly to evaluate the integrals numerically. Numerical examples are 
compared satisfactorily with analytical solutions. For the examples we find that the higher-order 
interpolation functions give higher accuracy, especially for problems with complicated geometry. 
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